Dynorphin regulates the phagocytic activity of splenic phagocytes in wall lizards: involvement of a κ-opioid receptor-coupled adenylate-cyclase-cAMP-PKA pathway.

نویسندگان

  • Sunil Kumar
  • Umesh Rai
چکیده

This in vitro study of the wall lizard Hemidactylus flaviviridis demonstrates the role of the opioid peptide dynorphin A((1-17)) [dyn A((1-17))] in the regulation of the phagocytic activity of splenic phagocytes. Dyn A((1-17)) in a concentration-dependent manner inhibited the phagocytic activity, and the maximum inhibition was recorded at a concentration of 10(-9) mol l(-1). To explore the receptor-mediated effect of dyn A((1-17)), cells were treated simultaneously with the non-selective opioid receptor blocker naltrexone and dyn A((1-17)). Naltrexone completely blocked the inhibitory effect of dyn A((1-17)) on phagocytosis. Moreover, the involvement of selective opioid receptors was investigated using selective opioid receptor antagonists. CTAP and naltrindole, selective μ- and δ-opioid receptor blockers, respectively, failed to block the inhibitory effect of dyn A((1-17)) on phagocytosis. However, the selective κ-opioid receptor blocker NorBNI completely antagonized the inhibitory effect of dyn A((1-17)). Regarding the κ-opioid receptor-coupled downstream signaling cascade, the adenylate cyclase (AC) inhibitor SQ 22536 and protein kinase A (PKA) inhibitor H-89 decreased the inhibitory effect of dyn A((1-17)) on phagocytosis. Furthermore, treatment with dyn A((1-17)) caused an increase in intracellular cAMP content in splenic phagocytes. Thus, it can be concluded that, in H. flaviviridis, dyn A((1-17)) negatively regulates the phagocytic activity of splenic phagocytes by acting through κ-opioid receptors that are coupled with the AC-cAMP-PKA signal transduction mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure–Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes

Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming r...

متن کامل

The κ opioid system regulates endothelial cell differentiation and pathfinding in vascular development.

The opioid system (opioid peptides and receptors) regulates a variety of neurophysiologic functions, including pain control. Here we show novel roles of the κ opioid system in vascular development. Previously, we revealed that cAMP/protein kinase A (PKA) signaling enhanced differentiation of vascular progenitors expressing VEGF receptor-2 (fetal liver kinase 1; Flk1) into endothelial cells (ECs...

متن کامل

Novel signaling of dynorphin at κ-opioid receptor/bradykinin B2 receptor heterodimers.

The κ-opioid receptor (KOR) and bradykinin B2 receptor (B2R) are involved in a variety of important physiological processes and share many similar characteristics in terms of their distribution and functions in the nervous system. We first demonstrated the endogenous expression of KOR and B2R in human SH-SY5Y cells and their co-localization on the membrane of human embryonic kidney 293 (HEK293)...

متن کامل

Cell death sensitization of leukemia cells by opioid receptor activation

Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in l...

متن کامل

The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

BACKGROUND The vanilloid receptor 1 (TRPV1) is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA) pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2011